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Abstract. In recent decades, sequencing techniques have undergone rapid devel-
opment, leading to a significant reduction in costs. Concurrently, the popularity 
of personalized medicine and portable devices has surged. These advancements 
have precipitated an exponential increase in genomic data volume, posing formi-
dable challenges in terms of storage and transmission. Compression emerges as 
a viable solution to address these challenges. To date, the bulk of research within 
this domain has concentrated on refining compression algorithms. However, in-
vestigations into hardware acceleration of these algorithms have been scant, pri-
marily focusing on Graphics Processing Units (GPUs) or Field-Programmable 
Gate Arrays (FPGAs). Given the prevalence of multiprocessor system-on-chips 
(MPSoCs) in portable devices, there is a pressing need to design algorithms that 
can leverage computing resources effectively, enhancing both performance and 
energy efficiency, which are crucial for portable devices. To address these chal-
lenges, our study introduces a novel heterogeneous compression algorithm that 
significantly advances the performance and energy efficiency of genomic data 
processing on mobile devices. By implementing a dual-stage pipeline approach 
for Gzip and leveraging both OpenCL and OpenMP, our framework optimally 
utilizes the disparate computational resources of MPSoCs. The empirical results 
underscore a robust performance enhancement, achieving an average increase of 
15.7% in data processing speed to conventional CPU-based methods. This sub-
stantial leap in efficiency alleviates the computational burdens typically associ-
ated with mobile genomic applications. 
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1 Introduction 

With ongoing advancements in sequencing technologies and a marked decrease in se-
quencing costs, personalized medicine is evolving rapidly, paving the way for tailored 
treatments. This evolution generates an ever-increasing volume of genomic data, pre-
senting formidable challenges in long-term storage—given that much of this data is 
unique and may be revisited in the future. Additionally, the transmission and access of 
large data volumes require substantial network bandwidth. 

For example, the data produced by the 1000 Genomes Project in its first six months 
surpassed the volume of sequence data accumulated over 21 years in the NCBI 
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GenBank database [1]. Hence, efficient data compression becomes essential to support 
this growth. 

Moreover, the introduction of portable nanopore sequencing devices, such as Oxford 
Nanopore Technologies’ MinION device [2], has made DNA and RNA sequencing 
feasible in the field or clinic. The deployment of these devices across various contexts 
highlights their significant potential. However, a corresponding portable solution for 
genomic analysis in such scenarios remains underdeveloped, limiting the full realiza-
tion of these devices’ potential. Recent efforts have been made to develop a mobile 
toolkit for ONT-sequencing analysis [3]. Yet, these efforts primarily focus on the 
toolkit’s functionality, with little attention to maximizing the computing resources of 
portable devices to enhance toolkit performance. 

Meanwhile, computing platforms have universally shifted towards multi-core archi-
tectures. Portable devices, for example, often employ Mobile Application Processors 
as MPSoCs, incorporating a mix of general-purpose cores, GPUs, DSPs, non-program-
mable accelerators, and FPGAs. This diversity offers the potential for high perfor-
mance, provided software can effectively harness all available resources by utilizing 
the most power-efficient cores. However, developing algorithms that run efficiently on 
such heterogeneous MPSoCs is challenging, and the development of heterogeneous 
multi-core systems has not been paralleled by advancements in software support, mak-
ing programming for these complex systems a formidable task. For further details on 
the influence of architectures on bioinformatics, refer to section 2.2. 

In this paper, we realized a heterogeneous version of Gzip on smartphones to offer 
a portable yet powerful method for genomic data compression. To optimize the com-
putational resource utilization on smartphone platforms, we have deconstructed the 
Gzip algorithm into two segments, integrating them within a pipeline to improve 
throughput. Furthermore, we allocated Gzip’s computational tasks to heterogeneous 
computing units, each selected based on its compatibility with the specific computa-
tional requirements. By adjusting the voltage frequency of these computing units, we 
achieved a balanced execution time across different pipeline stages, thus enhancing 
performance and managing energy consumption and thermal output. Our experimental 
findings indicate that this heterogeneous implementation of Gzip yields, on average, a 
performance increase of approximately 15.7% compared to normal CPU execution. To 
facilitate reproducibility and further research, our source code is available under the 
MIT License at https://github.com/RookieTars/HeterogeneousGenomeGzip. Although 
we have already developed a prototype program, we are still working on a mobile ap-
plication that incorporates our algorithm. This application is designed to enhance the 
usability of the algorithm and to facilitate further experimental extensions. 

2 Related Works 

2.1 Genome Data Compression 

Genome data compression algorithms can be broadly classified into two categories: 
those designed for raw Next-Generation Sequencing (NGS) data, including FASTQ and 
SAM/BAM files, and those for compressed assembled genome data, such as FASTA 

https://github.com/RookieTars/HeterogeneousGenomeGzip
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files. Within the realm of assembled genome compression, algorithms can be further 
divided into reference-based and non-reference-based methods. Reference-based meth-
ods, such as DNAzip [4], HiRGC [5], iDoComp [6], GeCO [7], and GDC [8, 9], utilize 
a reference genome to enhance compression efficiency. Conversely, certain algorithms 
[8–10] are specifically optimized for genome collections, leveraging similarities across 
entire collections to maximize redundancy reduction. On the other hand, non-reference-
based methods [11–14] compress genome sequences directly, without the aid of exter-
nal data. This approach was predominant until the introduction of referential genome 
compression algorithms by Brandon et al. [15]. Typically, reference-based methods 
outperform non-reference-based ones by utilizing similarities within the same species’ 
genomes. For a deeper understanding of developments in this field, readers are encour-
aged to consult additional literature [16].  

Genome data compression has primarily been implemented on CPUs, focusing 
mainly on the compression algorithms themselves. However, GPU adaptations such as 
CULZSS [17] and efforts by Patel et al. [18] have not met expected either compression 
ratios or performance due to inherent complexities. Limited research has been con-
ducted on designing algorithms for heterogeneous processors. Our study introduces a 
novel approach to genome data compression on MPSoCs, optimizing task allocation 
across different processors to enhance computational efficiency. 

2.2 Hardware Accelerated Bioinformatics 

Despite advancements in CPUs through Moore’s Law and multi-threading, there is still 
a significant gap between the processing capabilities of CPUs and the demands of bio-
informatics analyses. This has led to the use of various hardware architectures, such as 
high-performance computing (HPC), FPGAs [19], multi-core devices, and GPUs [20], 
to accelerate bioinformatics algorithms. Meanwhile, as genome data acquisition de-
vices become smaller [21], the need for efficient data compression on resource-limited 
portable devices grows, despite challenges in parallelizing compression schemes and 
coordinating between processors within an MPSoC. Our work focuses on the efficient 
use of heterogeneous processors within an MPSoC for compression tasks, avoiding the 
complexity of parallelizing on a single processor. 

3 Background 

3.1 Heterogeneity of MPSoC 

Heterogeneity in MPSoCs manifests in two primary forms: performance heterogeneity 
and functional heterogeneity. Performance heterogeneity arises when cores sharing the 
same instruction-set architecture (ISA) but exhibiting different power-performance 
characteristics are integrated within the same system. This variation often results from 
distinct micro-architectural features, such as the difference between in-order and out-
of-order cores. An example of this is the ARM big.LITTLE architecture, which, for 
instance, may combine high-performance, out-of-order ARM Cortex-A15 cores with 
energy-efficient, in-order ARM Cortex-A7 cores. On the other hand, functional 



4  L. Chen et al. 

heterogeneity involves integrating cores of vastly different functionalities (and ISAs) 
on the same die, common in embedded systems. Such MPSoCs may include general-
purpose CPU cores, GPU cores, Digital Signal Processor (DSP) blocks, and various 
hardware accelerators or Intellectual Property (IP) blocks (for instance, video encod-
ers/decoders, imaging processing units, etc.). This approach caters to the performance 
needs within a tight power budget by assigning workloads to the most suitable pro-
cessing units, whether they are GPUs, DSPs, or dedicated accelerators. 

 
Fig. 1. Architecture of Snapdragon® 855 

Recent mobile platforms, including smartphones, tablets, and wearable devices, in-
corporate both types of heterogeneity to optimize performance and energy efficiency. 
For instance, the Qualcomm® Snapdragon® 855 [22], utilized in our research, show-
cases this with its array of CPU cores: one high-performance Qualcomm® Kryo™ 485 
Prime core operating at 2841 MHz, three medium-performance Qualcomm® Kryo™ 
485 Gold cores at 2419 MHz, and four low-performance Qualcomm® Kryo™ 485 Sil-
ver cores at 1785 MHz, alongside an Adreno™ 640 GPU, as depicted in Fig. 1. 

3.2 Dynamic Voltage-Frequency Scaling 

The performance, energy consumption, and thermal behavior of a processor core are 
significantly influenced by its operating frequency. Research has demonstrated that the 
execution time T of a task on a core exhibits a relationship with frequency, represented 
as: 

 T = α / f + β, (1) 

where f denotes the frequency, and α, β are constants derived via interpolation from 
runtime data at two extreme frequencies. Moreover, power consumption escalates 
quadratically with frequency increase: 
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 P = ACV2f + Pi, (2) 

in which A stands for the activity factor, C the capacitance, V the voltage, f the fre-
quency and Pi the idle power consumption at the specified frequency. Additionally, the 
core’s temperature rises more sharply as the frequency increases, though this relation-
ship is less precisely defined. To manage core performance, energy efficiency, and pre-
vent thermal throttling, Dynamic Voltage-Frequency Scaling (DVFS) algorithms adjust 
the operating frequency and corresponding voltage based on the current workload, rep-
resenting one of the most widely adopted strategies. 

4 Methods 

To thoroughly explore the advantages of heterogeneous computing on MPSoCs, we 
have developed a specialized algorithm tailored for the Gzip compression method, tak-
ing into account its unique characteristics. Specifically, we segment the data into blocks 
and allocate them to idle processors. These blocks are then processed in parallel by 
different components in a pipeline structure. Ultimately, all processed blocks are 
merged to produce the final compressed output. 

4.1 Distribute Tasks Transparently 

Coordinating all cores to effectively process data blocks poses a significant challenge. 
Open Computing Language (OpenCL) [23] is an open standard designed to facilitate 
the development of parallel applications across heterogeneous multi-core architectures, 
including CPUs, GPUs, DSPs, and FPGAs. Device vendors supporting OpenCL are 
responsible for providing the necessary runtime software and compilation tools that 
enable the execution of OpenCL programs. Unfortunately, current mobile System-on-
Chips (SoCs) often lack OpenCL support for ARM CPU cores [24]. While many aca-
demic projects might opt for an open-source solution like FreeOCL [25], it unfortu-
nately does not offer robust support for the latest Android versions. Consequently, we 
have chosen to implement a uniform task scheduling system using OpenMP [26] for 
shared-memory multiprocessing on CPUs, while utilizing OpenCL for other compo-
nents when possible, which makes the idle computing components get various kinds of 
tasks from the queue transparently possible. 

4.2 Pipeline Organization 

To enhance throughput, constructing an efficient pipeline for the Gzip algorithm pre-
sents another significant challenge. Gzip consists primarily of LZ77 and Huffman cod-
ing, each with unique characteristics that complicate full utilization of all components 
to accelerate the pipeline. 

LZ77 is a dictionary-based compression algorithm that identifies the longest match-
ing string within a sliding window and a lookahead buffer. It operates on the principle 
of reducing data redundancy by replacing certain substrings that appear elsewhere in 
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the data with references to their previous occurrences. According to the experiments 
we carried out, implementing LZ77 on GPUs using multi-threading has resulted in 
poorer performance compared to single-threaded CPU execution. This underperfor-
mance is due to several factors: 

• Data Transfer Limitations: The slow speed of data transfer between the GPU and 
memory significantly affects the efficiency of GPU parallel computations, as con-
tinuous data retrieval from memory for comparison is required. 

• Overheads in GPU Processing: While GPUs possess a greater number of pro-
cessing units, the extensive one-by-one comparison operations required by LZ77 in-
troduce considerable overheads in processor communication and collaboration. 

• GPU Inefficiency in Branch Operations: GPUs are not well-suited for branch op-
erations. The SIMD architecture within GPUs requires that each thread perform sim-
ilar operations simultaneously. The extensive conditional logic in LZ77 means that 
different threads may need to perform different operations, causing some threads to 
wait for others, thus reducing parallel computing efficiency. In contrast, CPUs can 
better handle this issue through branch prediction. 

Building on a similar approach, we attempted to optimize the Huffman encoding 
segment of Gzip using GPUs. Huffman encoding in Gzip compresses the array of length 
and distance pairs resulting from LZ77 by counting the frequency of each character, 
sorting characters from least to most frequent, constructing a Huffman binary tree, and 
performing variable-length encoding from the leaf nodes to the root node. Characters 
that occur more frequently are assigned shorter codes, while less frequent characters 
receive longer codes, thus minimizing the overall data size for effective compression. 

We decomposed the Huffman encoding algorithm into three distinct phases: fre-
quency counting, Huffman tree construction, and code allocation. The most time-con-
suming aspects of this stage are the frequency counting and the code generation phases. 
We implemented these phases on the mobile GPU and assessed their performance rel-
ative to CPU-based implementations with Qualcomm® Snapdragon® 855 [22]. 

Table 1. Execution times of Huffman encoding’s time-consuming phases on CPU and GPU  

Size of the 
tested file 

Frequency 
counting on 
CPU (ms) 

Frequency 
counting on 
GPU (ms) 

Code generation 
on CPU (ms) 

Code generation 
on GPU (ms) 

4.47 KB 0.007760 7.569063 0.006562 0.142031 

32.0 KB 0.036042 8.636772 0.041511 0.123646 

73.7 KB 0.074844 8.573855 0.102448 0.432917 

8.51 MB 9.103074 11.291147 7.580574 4.102240 

10.3 MB 12.900314 10.694636 9.128022 4.927865 

The results presented in Table 1 indicate that when dealing with smaller input files, 
using GPUs does not offer a performance advantage over CPUs; however, as the size 
of the input files increases, the performance benefits of GPUs become increasingly sig-
nificant, even surpassing those of CPUs. These outcomes suggest that Huffman 
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encoding could benefit from parallelization, but the input size should be sufficient. Be-
cause the gains may be offset by additional overheads such as data sharing and syn-
chronization when the data processed by each thread is too small. Nonetheless, the input 
for the Huffman algorithm in Gzip, being data processed by LZ77’s dynamic sliding 
window, typically does not exceed 32KB. Therefore, executing the Huffman algorithm 
on a GPU does not achieve the intended performance optimization. 

Based on the analysis and tests conducted, due to the complex data dependencies 
and branching operations inherent in the Gzip algorithm, utilizing GPUs does not ef-
fectively optimize algorithm performance and compression efficiency. We executed the 
entire Gzip compression algorithm on the CPU and proposed a heterogenous architec-
ture approach to better leverage the various cores of the CPU.  
 As shown in Fig. 2, we organize the cores of the MPSoC into two pipeline stages. 
As data sharing among different types of cores are usually larger than that among same 
cores (the sharing of data between CPU and GPU are much larger), our main principle 
for pipeline organizations is to cluster the same type of cores together. Correspondingly, 
we divide the Gzip algorithm into two stages: LZ77 is whole put on the super core, 
while the Huffman coding is put on the stage consist of four small cores and three big 
cores taking input from buffer, which LZ77 generated. The reason is that LZ77 is pure 
serial job. And the Huffman coding is independent and suitable for SIMD paralleliza-
tion, meaning that we can divide file into blocks and dispatch them independently and 
transparently to idle cores in the stage. 

 
Fig. 2. Pipelined Gzip algorithm 

We finally determine the optimal frequency for each type of core to increase core 
utilization using DVFS, by addressing the following energy minimization problem: 

 arg min
fS, fB, fL

ωt ⋅ ‖TLZ - TH‖2

 + ωp ⋅ �ESTS
2 + EBTB

2 + ELTL
2�

, (3) 

where TLZ and TH are the processing time of two pipeline stages (LZ77 and Huffman 
coding) respectively. ES, EB and EL are the energy consumption of super core, big core, 
and little core respectively while  TS, TB and TL similarly stand for processing time for 
cores. ωt and ωp are weights which we attribute equal constants to performance and 
power efficiency. Since LZ77 runs on super core and Huffman encoding runs on big 
and little cores, we have TS = TLZ and TB = TL = TH to simplify the problem. In addition, 
target frequencies relate to processing times and energy consumptions with Equation 
(1), Equation (2) and power Equation (4): 

 P = W ∕ t (4) 
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5 Results and Discussions 

We implemented heterogeneous compression methods with OpenCL for the GPU part 
and OpenMP for the CPU part. We conducted a series of experiments using a Google 
Pixel® 4 smartphone with Qualcomm® Snapdragon® 855 SoC [22] as the hardware 
platform for convenience. In this section, we show how heterogeneous design of the 
algorithms can improve in running time and power efficiency. In addition, we explored 
the reason that had influence on energy efficiency. We compare our heterogeneous al-
gorithm with its normal CPU counterparts. We emphasis more on the running time and 
energy efficiency, both of which are important for portable devices and also our main 
motivations of this work. 

5.1 Test Data 

For the pipelined Gzip algorithm, we prepared two groups of genome data. The first 
group is of small size, comprising yeast [27] and fruit fly genomes. We downloaded 
three yeast strains (s.paradoxus, yeast_S288C and yeast_AWRI796) and D. melano-
gaster (dm6) genomes in FASTA format, with sizes not exceeding 1 GB. The third 
group contains considerably larger datasets, with three files containing human gene data 
in different testing ages (hg17, hg19 and hg38), one with dog gene data inside 
(canFam6) and one containing mouse gene data (mm39). The data pertaining to these 
advanced species all exceed 1 GB in size. The detail sizes of these files are documented 
in Table 2. 

Table 2. Details of test data 

Size group Species Gene dataset File size 
Small Yeast s.paradoxus 11.2 MB 

yeast_S288C 11.6 MB 

yeast_AWRI796 7.46 MB 
Fruit fly dm6 139.8 MB 

Large Mouse mm39 2.59 GB 
Dog canFam6 2.19 GB 
Human hg17 2.93 GB 

hg19 2.98 GB 

hg38 3.05 GB 

5.2 Performance and Energy Efficiency Improvements of Heterogeneous Gzip 

For the Gzip algorithm, we compared the heterogeneous algorithm with normal CPU 
algorithm on both performance and energy consumption.  

Results of performance is shown in Fig. 3. Comparing the processing times for nine 
gene datasets, it is evident that the heterogeneous algorithm enhances the compression 
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performance of gene datasets 15.7% on average compared to the normal CPU algorithm 
with the same compression ratio. For smaller gene datasets, such as the yeast and fruit 
fly genomes, which are less than 1 GB in size, the performance improvement ranges 
between 19.6% and 21.3%. In contrast, for larger gene datasets like the human and 
mouse genomes, exceeding 1 GB, the improvement is more modest, averaging between 
9.3% and 12.5%. Therefore, the algorithm significantly boosts performance for smaller 
gene datasets, while the gains for larger gene datasets are relatively smaller. This dis-
crepancy may be attributed to longer runtime associated with larger files leading to 
increased temperature and subsequent performance degradation of the SoC. To enhance 
performance for large-scale datasets, further refinement of the algorithm’s design and 
implementation is required, considering cooling solutions in future research. 

 
Fig. 3. Test results of performance on small and large size genome data 

Energy consumption test results from Fig. 4 reveal significant differences in the en-
ergy efficiency improvements provided by Gzip’s heterogeneous algorithm across var-
ious file sizes. For smaller data files, such as the yeast and fruit fly genomes, energy 
consumption unexpectedly increased, with an increase ranging between 7.8% and 
17.4%, 13.7% on average. Conversely, for larger genomic files, such as those of mouse, 
dog, and humans, there was a minor reduction in energy consumption, falling within 
the range of 1.5% to 3.1%. 

 
Fig. 4. Test results of energy consumption on small and large size genome data 
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5.3 Exploration for the Reason of Extra Energy Consumption and Discussion 

To explore why our method consumes more energy than traditional CPU approaches 
when processing small size group, and to further investigate the user experience en-
hancements it offers, we conducted experiments focusing on temperature—a critical 
factor for mobile devices. 

We selected one typical file each from both small and large size groups and moni-
tored the SoC temperature changes while compressing these files on the device. During 
the experiments, the initial SoC temperature of the device was maintained at 30°C, and 
the device operated under ambient room temperature. We tested the dm6 and hg19 ge-
nomic files, and the results are shown in Fig. 5. 

For the dm6 file, the SoC temperature of our method remained consistently higher 
than that of the traditional CPU method from the start to the end of the program execu-
tion, and the temperature difference increased over time. Our method consumed more 
energy with small size files, which we infer was largely due to increased heat genera-
tion. In contrast, for the hg19 file, our method's SoC temperature was mostly higher 
than the traditional CPU's, but the temperature difference was not too significant. The 
time difference in energy consumption between the traditional CPU method and ours 
was considerable, unlike with the dm6 file, which provided the traditional CPU method 
with more time to consume energy in generating heat, offsetting the energy efficiency 
benefits of the lower temperature of large size files. 

On mobile devices, balancing performance, energy consumption, and temperature is 
crucial. In our approach, the energy efficiency and temperature performance of small 
files did not match those of traditional CPU methods. For scenarios where energy effi-
ciency and thermal performance are prioritized, it may be advisable to forego the minor 
performance gains in compressing small files. Finding the balance between perfor-
mance, energy consumption, and temperature in our method is essential, particularly in 
identifying the threshold at which energy gains are optimized for file size. This will be 
a focus of our future work. 

 
Fig. 5. Test results of temperature on typical small and large size genome data 

6 Conclusion 

In this paper, we investigate how the heterogeneous design of compression algorithm 
can improve the performance in both running time. Specifically, we design a pipelined 
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Gzip compression method by organizing processors into a two-stage pipeline, dividing 
the algorithms into two steps, mapping the two steps to the two stages of the pipeline, 
and finally adjusting the frequency of processors to make the processing time of each 
stage be consistency.  

Experiments show that the heterogeneous Gzip algorithm gains average 15.7% im-
provement against the normal CPU counterparts in running time.  
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